

International Joint Research Laboratory of Earthquake Engineering

ILEE-QuakeCoRE Shake Table Test on a Low-Damage Concrete Wall Building

<u>Yiqiu Lu</u>, Rick Henry (PI), Ying Zhou (Co-PI), Anqi Gu, Yi Xiao, Ken Elwood, Geoff Rodgers, T.Y. Yang

11th National Conference on Earthquake Engineering integrating science, engineering, & policy June 25–29, 2018

PT walls

- Extensively investigated experimentally and numerically
- Easy to incorporate dampers
- Dependable behaviour and minimal structural damage
- Implemented in a number of buildings

Allan MacDiarmid Building: Wellington

Southern Cross Hospital: Christchurch

UFP dissipater

- 3 storey
- PT rocking coupled walls & frames

- Walls with different types of dampers
- External dampers rather than internal reo
- Detailing are different
- Different with tested walls in the lab

Research gaps

- Component behaviour well understood
- Interaction of components in building system needs further development and verification
- Practical construction details also need to be verified and guidelines published

2. Objectives

- Verify seismic response of low-damage concrete wall building implementing state-of-art concepts
- Verify practical construction details used in low-damage buildings
- Investigate interaction of the structural components
- Sub objectives:
 - 1. Compare alternative wall-to-floor connection details
 - 2. Compare alternative dissipating devices
 - 3. Torsional / bi-directional response
 - 4. Diaphragm design / load paths

3. Test building

- 2 storeys (@ full scale)
- Fit onto 2 tables joined (10 \times 6m)
- Post-tensioned concrete walls
- Gravity frames
- Interchangeable energy dissipating devices

Member	Size (mm)
Columns (all levels)	400 × 400
Beams (all levels)	300 × 400
Walls at long-span direction	150 × 2500
Walls at short-span direction	150 × 2000
Double-Tee floor	300TT 80 mm topping
Composite floor	ComFlor60 130 mm

3. Test building

(a) Long span direction (Grids 1 & 3)

(b) Short span direction (Grids A & C) - Wall panel shown separately

6. Assembly plan

7. Construction

Precast construction: Citi-Raise Construction Group

 Precast components have been constructed

4. Detailing

Isolated wall-to-floor connection

- Transfer of horizontal forces in bearing
- Free to slide vertically to eliminate dis. incompatibility

Armouring

Steel tongue

4. Detailing

Flexible wall-to-floor connection

- Stiff to transfer horizontal forces through diaphragm
- Flexible out-of-plane to accommodate wall uplift and rotation

4. Detailing

Slotted beam

- Pin connection
- Minimise elongations
- Could install dampers

Energy dissipation device variations

Design case	Variation	Beam-column joints	Wall base
Design 2		None	Steel fuse
(2% drift)			
Design 1 (1% drift)	A	Steel fuse	Steel fuse
	В	Steel fuse	Viscous energy dissipating device
	С	HF2V	Steel fuse

Delibrate torsional load cases

Steel fuses

Viscous damper

Lead-extrusion (HF2V)

8. Blind modelling opportunity

- Provide blind modelling opportunity
- Schedule
 - Aug 2018: Release building design
 - Nov 2018: Testing
 - Dec 2018: Release actual ground motions
 - Jan 2019: Collect modelling results
 - Apr 2019: Workshop on blind modelling comparison

ILEE

Thank you Questions!